Проекция скорости формула

Татьяна Ефимова предлагает статью на тему: "проекция скорости формула" с детальным описанием.

1. МЕХАНИКА
1.1. Кинематика

Движение с ускорением

Равноускоренное прямолинейное движение – движение по прямой с постоянным ускорением (а = const ).

Ускорение а (размерность: м/с 2 ) – векторная физическая величина, показывающая, на сколько изменяется скорость тела за 1 с.

В векторном виде:

В проекции на ось ОХ формула аналогичная

Знаки проекции ускорения зависят от направления вектора ускорения и оси – сонаправлены они или направлены противоположно.

Измерительный прибор – акселерометр. (В ЕГЭ по физике есть вопросы, каким прибором что измеряют.)

График ускорения – зависимость проекции ускорения от времени:

График ускорения при равноускоренном прямолинейном движении – прямая, параллельная оси времени (1, 2).
Чем дальше график от оси времени (2), тем больше модуль ускорения.

Мгновенная скорость – скорость в данный момент времени или в данном месте пространства .

Скорость при равноускоренном прямолинейном движении.

В векторном виде,
в проекции на ось OX,
с учетом знака ускорения («+» разгон, «-» торможение):


График мгновенной скорости – зависимость проекции скорости от времени.

График скорости при равноускоренном прямолинейном движении – прямая (1, 2, 3). Если график располагается над осью времени, то тело движется по направлению оси ОХ.

Чем больше угол наклона графика (3), тем больше модуль ускорения.

Если график пересекает ось времени (2), то на первом этапе тело тормозило, в какой-то момент скорость его стала равной нулю, и далее тело двигалось ускоренно в противоположную сторону.

Геометрический смысл перемещения


Модуль перемещения при равноускоренном прямолинейном движенииравен площади трапеции под графиком скорости.

Формулы для определения кинематических величин равноускоренного прямолинейного движения:


Без ускорения” и “без времени” означает, что в этих формулах не фигурирует ускорение и время, но это не значит, что ускорение равно нулю.
Цветом выделены основные формулы, остальные легко выводятся из них.

Уравнение координаты при равноускоренном прямолинейном движении позволяет определить кинематические величины равноускоренного прямолинейного движения даже в тех случаях, когда направление движения меняется:

Графики кинематических величин прямолинейного движения.
Их ндо уметь читать и рисовать. По горизонтальной оси обычно время. По вертикальной оси. будьте внимательны!

Свободное падение

Это частный случай движения с ускорением.

• Свободное падение происходит под действием только силы тяжести. Подробнее о связи силы с ускорением будет в теме “Динамика”, второй закон Ньютона.

• Сопротивление воздуха обычно не учитывается.

• Все тела независимо от массы падают (в вакууме или без учета сопротивления воздуха) с одинаковым ускорением.

• Ускорение свободного падения всегда направлено вниз, к центру Земли и равно g = 9,8 м/с 2 ; в задачах округляется до
g = 10 м/с 2 .

• Свободное падение по вертикали – пример равноускоренного прямолинейного движения.

• В задачах на свободное падение единицы измерения всех величин сразу следует переводить в СИ.

Основные формулы для определения кинематических величин при свободном падении (вертикальный бросок) те же, что даны выше. При этом ускорение a=g=10 м/с 2 .

Уравнение координаты при свободном падении позволяет определить кинематические величины свободного падения даже в тех случаях, когда направление движения изменяется. Уравнение координаты позволяет определить высоту тела в любой момент времени.

В разделе “Динамика” рассмотрим более сложные случаи:
– Тело подбросили от земли и поймали на некоторой высоте.
– Тело подбросили от земли, на одной и той же высоте оно побывало дважды.
– Горизонтальный бросок (движение по параболе). Бросок под углом к горизонту.

Проекция скорости формула

Материалы к зачету по теме “Основные законы механики

1. Механическое движение.
Явление механического движения тел (материальных точек)состоит в том, что положение тела относительно других тел, т. е. его координаты, с течением времени изменяется.Чтобы найти координаты тела в любой момент времени, нужно знать начальные координаты и вектор перемещения тела. Изменение координаты тела равно проекции вектора перемещения на соответствующую ось координат.

Прямолинейное равномерное движение — это самый простой вид движения.При таком движении нужно определять лишь одну координату потому, что координатную ось можно направить вдоль направления движения тела. Координату х тела (материальной точки) в любой момент времени t можно вычислить по формуле:

,

где

— начальная координата тела, а — проекция вектора его скорости на ось х. При вычислениях по этой формуле знаки входящих в нее величин определяются условием задачи.

Механическое движение относительно. Это значит, что перемещение и скорость тела относительно различных систем координат, движущихся друг относительно друга, различны.

Покой также относителен. Если относительно какой-то системы координат тело покоится, то существуют и такие системы отсчета, относительно которых оно движется.

2. Основная задача механики
состоит в нахождении положения тела в любой момент времени. Решение этой задачи идет по своеобразной «цепочке»:
чтобы найти координату точки, нужно знать ее перемещение, а чтобы вычислить перемещение, нужно знать скорость движения.
По такой цепочке: скорость → перемещение → координата решают задачи механики для прямолинейного равномерного движения.

Если движение ускоренное, то нужно знать ускорение, так что при таком движении задачи решают по «цепочке» ускорение → скорость → перемещение → координата. И для равномерного, и для ускоренного движения должны быть известны начальные условия — начальные координаты и начальная скорость.
При прямолинейном ускоренном движении мгновенная скорость тела (материальной точки) непрерывно изменяется от одного момента времени к другому. Поэтому для вычисления скорости в любой момент времени и в любой точке нужно знать быстроту ее изменения, т.е. ускорение:

.

Проекцию скорости тела на выбранную координатную ось в любой момент времени t вычисляют по формуле:

.

Координату тела находят по формуле:

.

Проекцию перемещения находят по формуле:

.

Из приведенных формул получаются формулы для скорости, координат и перемещений при равномерном прямолинейном движении, если принять, что а x = 0.

Значение проекции перемещения при равноускоренном движении можно определить также по формуле:

.
Так как , то для координаты тела х имеем:

При вычислениях по приведенным формулам знаки проекций векторов

, а также знак начальной координаты х, определяются условием задачи и направлением оси координат.

3. При криволинейном движении непрерывно изменяется направление вектора скорости, и в каждой точке траектории он направлен по касательной к траектории в данной точке. Поэтому даже равномерное движение по криволинейной траектории, при котором значение модуля скорости постоянно, есть ускоренное движение. Движение тела (материальной точки) по окружности описывают не только с помощью линейных величин — перемещения и скорости, но и с помощью угловых величинугла поворота радиуса &#966, проведенного из центра окружности к телу, и угловой скорости ω.

Связь между линейной и угловой скоростью выражается формулой:

,

где r — радиус окружности.
При равномерном движении по окружности вектор ускорения в любой точке окружности перпендикулярен вектору скорости и направлен к центру окружности. Модуль вектора центростремительного ускорения выражается равенством:

.

Относительно вращающегося стержня (оси) не закрепленное на нем тело (точка) движется вдоль стержня по направлению от оси вращения.

Пример решения задачи:

1. Ширина реки 200 м. Лодка, держа курс перпендикулярно течению реки, достигла противоположного берега за 140 с. Скорость течения воды в реке 0,8 м/с. Определите скорость и перемещение лодки относительно берега.


Вычисления:


Ответ: Скорость лодки относительно берега 1,6 м/с, перемещение 112 м.

Решите задачи самостоятельно:

1. Через реку переправляется лодка, выдерживая курс перпендикулярно течению. Скорость лодки
4 м/с, скорость течения реки 3 м/с. Какова ширина реки, если лодку снесло на 60 м?

2. 9 км/ч = . м/с; 10 м/с = . км/ч; 8 км/с = . км/ч, 54 км/ч = . м/с.

3. Автомобиль движется: а) с постоянной скоростью; б) с постоянным ускорением;
в) с положительным ускорением; г) с отрицательным ускорением.
Назовите вид каждого движения и изобразите соответствующие графики скорости.

1. МЕХАНИКА
1.1. Кинематика

Механическое движение и его характеристики

Механика изучает самый простой и наглядный вид движения – механическое движение. Механическое движение – это изменение положения тела в пространстве, относительно других тел с течением времени.

По характеру движения точек различают три вида движения:

а) поступательное – это движение, при котором все точки
тела движутся одинаково и любая прямая, мысленно прове денная в теле, остается параллельна сама себе;

б) вращательное движение, при котором все точки тела движутся по окружностям;

в) колебательное движение – движение, которое повторяется или почти повторяется. В отличие от вращательного движения, колебательное происходит в двух взаимно противоположных направлениях.

По виду траектории различают прямолинейное и криволинейное движения (частный случай криволинейного движения – движение по окружности); по скорости – равномерное и неравномерное; по ускорению – равноускоренное, равнозамедленное, ускоренное.

Основная задача механики – определять положение тела в пространстве (координаты) в любой момент времени.

Материальная точка – это тело, размерами которого можно пренебречь в условиях данной задачи. Тело можно принять за материальную точку, если оно движется поступательно или если его размеры намного меньше расстояния, которые тело проходит.

Систему отсчета вводят для того, чтобы задать положение материальной точки в пространстве. В нее входят: тело отсчета (любое тело), система координат (одномерная, двумерная или трехмерная) и часы.

Траектория – линия, вдоль которой движется тело.


Путь – длина траектории.
Перемещение – это вектор, соединяющий начальное положение тела с конечным. Путь равен перемещению, если тело движется по прямой.

Хорошая новость: в задачах ЕГЭ нет подвохов на различие понятий путь и перемещение. Вам надо просто уметь считать путь для прямолинейного движения по соответствующим формулам.

  • Тело, брошенное под углом к горизонту, движется по параболе. Длину участка параболы от вас найти не потребуют, это за рамками школьного курса.
  • Если тело движется по окружности, то путь будет равен длине окружности, умноженной на число оборотов. Перемещение равно нулю при целом числе оборотов. Пока таких задач не замечено, но может появиться в категории С. Руководствуйтесь здравым смыслом, сделайте рисунок, чертеж.

Проекции вектора перемещения на оси координат

Знаки проекций перемещения: проекцию считают положительной, если движение от проекции начала вектора к проекции конца происходит по направлению оси, и отрицательной, если против оси. В примере на рисунке sx > 0; sy Забегая вперед.

  • Если в задаче спрашивается: найдите изменение проекции или изменение величины проекции (например, проекции импульса), то действуйте по приведенным выше правилам.
  • Чаще вам встретятся задачи, где надо нарисовать проекции сил на оси координат, (например, тело на наклонной плоскости). Одну ось выбирайте по направлению движения, вторую перпендикулярно. Проекции сил можно нарисовать в черновике со стрелочками для наглядности, чтобы понять, где плюс, где минус. Но дальше надо складывать их алгебраически, как числа.
    Не запутайтесь: не пытайтесь складывать вектор силы с вектором проекции силы. Если выбрали две оси и нарисовали проекции, дальше надо писать уравнение для каждой из осей. Проекции сил, направленные против направления оси, будут с отрицательным знаком.

Уравнение координаты (в общем виде).

Радиус-вектор – вектор, начало которого совпадает с началом координат, а конец – с положением тела в данный момент времени. Проекции радиус-вектора на оси координат определяют координаты тела в данный момент времени. Радиус-вектор позволяет задать положение материальной точки в заданной системе отсчета.

пропускаем, потому что в задачах она не встречается.

Равномерное прямолинейное движение

Равномерное прямолинейное движение – движение, при котором тело за равные промежутки времени совершает равные перемещения. Обычно промежуток времени секунда, или час.

Скорость при равномерном прямолинейном движении

Скорость (м/с) – векторная физическая величина, которая показывает, какое перемещение совершает тело за единицу времени.

Встречается единицы измерения скорости:

1 км/ч = 1000 м / 3600 с

Измерительный прибор спидометр показывает модуль скорости.

График скорости при равномерном прямолинейном движении – прямая, параллельная оси времени (1, 2, 3). На индекс х не обращайте особого внимания. Имеется в виду, что выбрана некая ось координат.

Если график лежит над осью времени (1), то тело движется по направлению оси ОХ. Если график расположен под осью времени, то тело движется против оси Ох (2, 3).

Чем дальше график от оси времени, тем больше модуль скорости (случай 3).

Геометрический смысл перемещения

При равномерном прямолинейном движении перемещение определяют по формуле s = v • t . Такой же результат получим, если вычислим площадь фигуры под графиком скорости в осях ( v , t ). Значит, для определения пути и модуля перемещения при прямолинейном движении необходимо вычислить площадь фигуры под графиком скорости.

График проекции перемещения перемещения от времени.

График проекции перемещения при равномерном прямолинейном движении – прямая, выходящая из начала координат (1, 2, 3).

Если прямая (1) лежит над осью времени, то тело движется по направлению оси ОХ, а если под осью (2, 3), то против оси ОХ.

Чем больше тангенс угла наклона графика, тем больше модуль скорости (1).

График координаты – зависимость координаты тела от времени:


График координаты при равномерном прямолинейном движении – прямые (1, 2, 3).

Если с течением времени координата увеличивается (1, 2), то тело движется по направлению оси ОХ; если координата уменьшается (3), то тело движется против направления оси ОХ.

Чем больше тангенс угла наклона (1), тем больше модуль скорости.

Если графики координат двух тел пересекаются, то из точки пересечения следует опустить перпендикуляры на ось времени и ось координат – так мы узнаем, в какое время тела встретились и координату точки встречи.

Заморочка. Зачем нужна координата, спросите вы. Ведь можно выбрать икс нулевое = 0, это естественно. И формула упростится, будет совпадать с перемещением. Объясняю.
Представьте, соревнуются байкер и велосипедист. Естественно, мотоциклист должен дать фору велосипедисту. Например, 200 метров. Стартуют одновременно по звуку выстрела. Тогда начальная координата байкера 0, а велосипедиста 200. Очень удобно. Чертите график и задача решена! Скорость байкера больше, он обязательно догонит велосипедиста, но это может произойти позже, чем велосипедист успеет доехать до финиша.

Относительность механического движения

Под относительностью мы понимаем зависимость чего-либо от выбора системы отсчета. Например, покой относителен; движение относительно и положение тела относительно.

Правило сложения перемещений. Векторная сумма перемещений.

где Sj – перемещение тела относительно подвижной системы отсчета (ПСО); 2 – перемещение ПСО относительно непод вижной системы отсчета (НСО); s ‘ – перемещение тела относительно неподвижной системы отсчета (НСО).

Сложение векторов, перпендикулярных друг другу – по теореме Пифагора.
Правило треугольника. Правило параллелограмма.

Сложение векторов, расположенных под углом а друг к другу

Ь

По теореме косинусов. Встречается редко.

Векторная сумма скоростей:

где v – скорость тела относительно подвижной системы отсчета (ПСО); и – скорость ПСО относительно неподвижной сис темы отсчета (НСО); и’ – скорость тела относительно непод вижной системы отсчета (НСО).

Относительная скорость. Векторная разность скоростей.

Важно понимать: складываем, если движение тела сложное. Например, лодка плывет на другой берег. По направлению от кормы к носу ее толкает мотор. Вбок ее движет течение. Если лодочник держит курс перпендикулярно берегам, лодку будет сносить по течению и она реально будет двигаться по диагонали, наискосок. Другой вариант, когда курс направлен слегка против течения, чтобы плыть перпендикулярно берегу. Нарисуйте чертежи для обоих случаев самостоятельно. Разберитесь, где катеты, где гипотенуза.

Средняя скорость

Неравномерное движение – движение с переменной скоростью. Среднюю скорость всегда вычисляйте по известной простой формуле S = v • t , где S – все перемещение (сумма участков), t – всё время пути.

Не импровизируйте! Например, задача: Катер проплыл 100км со скоростью 50км/ч и еще 100км со скоростью 10км/ч. Расстояния одинаковые, но средняя скорость не будет равна среднему арифметическому. Посчитайте и убедитесь.

Вообще подход к решению задач такой: посмотрите, какие величины даны и вспомните соответствующую формулу, которая связывает эти величины. И пользуйтесь этой формулой.

Перемещение при прямолинейном равноускоренном движении

Попытаемся вывести формулу для нахождения проекции вектора перемещения тела, которое двигается прямолинейно и равноускоренно, за любой промежуток времени.

Для этого обратимся к графику зависимости проекции скорости прямолинейного равноускоренного движения от времени.

График зависимости проекции скорости прямолинейного равноускоренного движения от времени

Ниже на рисунке представлен график, для проекции скорости некоторого тела, которое движется с начальной скорость V0 и постоянным ускорением а.

Если бы у нас было равномерное прямолинейное движение, то для вычисления проекции вектора перемещения, необходимо было бы посчитать площадь фигуры под графиком проекции вектора скорости.

Теперь докажем, что и в случае равноускоренного прямолинейного движения проекция вектора перемещения Sx будет определяться таким же образом. То есть проекция вектора перемещения будет равняться площади фигуры под графиком проекции вектора скорости.

Найдем площадь фигуры ограниченную осью оt, отрезками АО и ВС, а также отрезком АС.

Выделим на оси ot малый промежуток времени db. Проведем через эти точки перпендикуляры к оси времени, до их пересечения с графикос проекции скорости. Отметим точки пересечения a и c. За этот промежуток времени скорость тела поменяется от Vax до Vbx.

Если взять этот промежуток достаточно малым, то можно считать что скорость остается практически неизменной, а следовательно мы будем иметь на этом промежутке дело с равномерным прямолинейным движением.

Тогда можно считать отрезок ac горизонтальным, а abcd – прямоугольником. Площадь abcd будет численно равна проекции вектора перемещения, за промежуток времени db. Мы можем разбить на такие малые промежутки времени всю площадь фигуры OACB.

То есть мы получили, что проекция вектора перемещения Sx за промежуток времени, соответствующий отрезку ОВ, будет численно равна площади S трапеции ОACB, и будет определяться по той же формуле, что и эта площадь.

Следовательно,

Так как Vx=V0x+ax*t и S=Sx, полученная формула примет следующий вид:

Мы получили формулу, с помощью которой можем рассчитать проекцию вектора перемещения при равноускоренном движении.

В случае равнозамедленного движения формула примет следующий вид:

Нужна помощь в учебе?

Предыдущая тема: Скорость прямолинейного равноускоренного движения: график скорости
Следующая тема:&nbsp&nbsp&nbspПеремещение при прямолинейном равноускоренном движении без начальной скорости

Все неприличные комментарии будут удаляться.

Чему равна проекция скорости тела? (1 июля 2011)

Источник: ЕГЭ 2011, О. Ф. Кабардин, С. И. Кабардина, В. А. Орлов.

Помогите решить задачу, не сходится ответ, в ответах 0, у меня получается 3, хотя бы по порядку, что и как находим, а решу сам.

  • версия для печати
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Комментарии

Один из вариантов:

v = Δx/Δt = x / = (1 + 4t − 2t 2 ) / = 4 − 4t.

В уравнение скорости:

подставляем t = 1 c.

Второй вариант предложите сами.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

1) Можно через координаты, построив график зависимости x от t. У нас есть уравнение координаты, значит, xo = 1 м, так как t = 1 c, то подставим в уравнение координаты и получим: x = 1 + 4 × 1 − 2 × 1 × 1 = 3 м, то есть пройденный путь Δx = x − xo, или Δx = 3 − 1 = 2 м.

2) Можно найти путь, пройденный телом, по формуле Δx = vot − (at 2 )/2, или Δx = 4 × 1 − (4 × 1 × 1)/2 = 2 м.

Теперь найдём скорость.

1) Можно по формуле Δx = (v 2 − vo 2 ) / (−2a) (минус, так как торможение, что видно из уравнения) или v = √(vo 2 − 2aΔx), то есть v = (4 × 4 − 2 × 4 × 2) = 0 м/c.

2) Можно по формуле Δx = (v + vo)/2, или v = (2Δx − vot)/t, то есть v = (2 × 2 − 4 × 1)/1 = 0 м/с.

Проекция скорости формула

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела

за любой промежуток времени к значению этого промежутка t:

= / t

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

= • t

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

Проекция перемещения на ось ОХ равна:

где x – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения, то есть зависимость координаты тела от времени х = х(t), принимает вид:

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

=

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= ‘ = ” Учитывая, что – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости, формула ускорения будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

= + t Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx

Скорость прямолинейного равноускоренного движения

Проекцию скорости на ось Ох при прямолинейном равноускоренном движении можно найти по следующей формуле:

Выразим из этой формулы, формулу для проекции скорости которую имело лвижущееся тело к концу некоторого промежутка времени t.

То есть, зная проекцию вектора начальной скорости V0x и проекцию вектора ускорения ax в любой момент времени можно вычислить проекцию вектора мгновенной скорости Vx, которую будет иметь тело в данной точке.

  • Представим зависимость скорости от времени при равноускоренно движении в виде графика.

Графиком уравнения Vx=V0x+ax*t будет прямая линия. Расположение этой лини в системе координат будет определяться значениями ax b V0x.

График проекции скорости тела при нулевой начальной скорости

На следующем рисунке представлен график проекции вектора скорости движущегося тела, которое в начальный момент времени имел нулевую скорость, и двигалось равноускоренно и прямолинейно с ускорением ax=1,5 м/(с^2) в течение 40 секунд.

Так как изначально скорость была нулю, то уравнение примет следующий вид

Для построения графика достаточно взять пару точек. Выберем момент времени

t=40, тогда Vx= ax*t =1,5*40 = 60

Отметим эти точки на графике и соединим их прямой.

Так как ускорение положительное, то график образует с осью Ох острый угол.

График проекции скорости тела при ненулевой начальной скорости

Теперь посмотрим, как будет выглядеть график вектора проекции скорости, при начальной скорости тела отличной от нуля.

В этом случае график будет описываться функцией Vx=V0x+ax*t.

На следующем рисунке представлен график проекции вектора скорости движущегося тела, которое в начальный момент времени имел скорость Vx=10, и двигалось равноускоренно и прямолинейно с ускорением ax=1,4 м/(с^2) в течение 4 секунд.

Для построения такого графика, также достаточно взять несколько значений переменной t и посчитать в них значение проекции скорости Vx. А потом соединить их прямой линией. Как видите, график имеет начальную точку не в нуле, в значении, которое имеет начальная скорость.

График проекции скорости тела при торможении

Если бы ускорение было отрицательным, то есть тело постепенно тормозило, то график составлял бы с положительным направлением оси Ох тупой угол.

Ниже представлен график такой ситуации.

Из графика видно, что тело начинало свое движение со скоростью 20 м/с, и постепенно замедляло её. За 10 секунд, оно полностью остановилось.

Нужна помощь в учебе?

Предыдущая тема: Прямолинейное равноускоренное движение и ускорение
Следующая тема:&nbsp&nbsp&nbspПеремещение при прямолинейном равноускоренном движении

Все неприличные комментарии будут удаляться.

Автор статьи: Татьяна Ефимова

Позвольте представиться. Меня зовут Татьяна. Я уже более 8 лет занимаюсь психологией. Считая себя профессионалом, хочу научить всех посетителей сайта решать разнообразные задачи. Все данные для сайта собраны и тщательно переработаны для того чтобы донести как можно доступнее всю необходимую информацию. Перед применением описанного на сайте всегда необходима ОБЯЗАТЕЛЬНАЯ консультация с профессионалами.

Обо мнеОбратная связь
Еще статьи:  Молитва матронушке вернуть любимого
Оценка 5 проголосовавших: 3
ПОДЕЛИТЬСЯ

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here